Category Archives: epistemic networks

a collective model of the ethics of AI in higher education

Hannah Cox, James Fisher, and I have published a short piece in an outlet called eCampus News. The whole text is here, and I’ll paste the beginning here:

AI is difficult to understand, and its future is even harder to predict. Whenever we face complex and uncertain change, we need mental models to make preliminary sense of what is happening.

So far, many of the models that people are using for AI are metaphors, referring to things that we understand better, such as talking birds, the printing press, a monsterconventional corporations, or the Industrial Revolution. Such metaphors are really shorthand for elaborate models that incorporate factual assumptions, predictions, and value-judgments. No one can be sure which model is wisest, but we should be forming explicit models so that we can share them with other people, test them against new information, and revise them accordingly.

“Forming models” may not be exactly how a group of Tufts undergraduates understood their task when they chose to hold discussions of AI in education, but they certainly believed that they should form and exchange ideas about this topic. For an hour, these students considered the implications of using AI as a research and educational tool, academic dishonesty, big tech companies, attempts to regulate AI, and related issues. They allowed us to observe and record their discussion, and we derived a visual model from what they said.

We present this model [see above] as a starting point for anyone else’s reflections on AI in education. The Tufts students are not necessarily representative of college students in general, nor are they exceptionally expert on AI. But they are thoughtful people active in higher education who can help others to enter a critical conversation.

Our method for deriving a diagram from their discussion is unusual and requires an explanation. In almost every comment that a student made, at least two ideas were linked together. For instance, one student said: “If not regulated correctly, AI tools might lead students to abuse the technology in dishonest ways.” We interpret that comment as a link between two ideas: lack of regulation and academic dishonesty. When the three of us analyzed their whole conversation, we found 32 such ideas and 175 connections among them.

The graphic shows the 12 ideas that were most commonly mentioned and linked to others. The size of each dot reflects the number of times each idea was linked to another. The direction of the arrow indicated which factor caused or explained another.

The rest of the published article explores the content and meaning of the diagram a bit.

I am interested in the methodology that we employed here, for two reasons.

First, it’s a form of qualitative research–drawing on Epistemic Network Analysis (ENA) and related methods. As such, it yields a representation of a body of text and a description of what the participants said.

Second, it’s a way for a group to co-create a shared framework for understanding any issue. The graphic doesn’t represent their agreement but rather a common space for disagreement and dialogue. As such, it resembles forms of participatory modeling (Voinov et al, 2018). These techniques can be practically useful for groups that discuss what to do.

Our method was not dramatically innovative, but we did something a bit novel by coding ideas as nodes and the relationships between pairs of ideas as links.

Source: Alexey Voinov et al, “Tools and methods in participatory modeling: Selecting the right tool for the job,” Environmental Modelling & Software, vol 19 (2018), pp. 232-255. See also: what I would advise students about ChatGPT; People are not Points in Space; different kinds of social models; social education as learning to improve models

People are not Points in Space

Newly published: Levine, P. (2024). People are not Points in Space: Network Models of Beliefs and Discussions. Critical Review, 1–27 (2024). https://doi.org/10.1080/08913811.2024.2344994 (Or a free pre-print version)

Abstract:

Metaphors of positions, spectrums, perspectives, viewpoints, and polarization reflect the same model, which treats beliefs—and the people who hold them—as points in space. This model is deeply rooted in quantitative research methods and influential traditions of Continental philosophy, and it is evident in some qualitative research. It can suggest that deliberation is difficult and rare because many people are located far apart ideologically, and their respective positions can be explained as dependent variables of factors like personality, partisanship, and demographics. An alternative model treats a given person’s beliefs as connected by reasons to form networks. People disclose the connections among their respective beliefs when they discuss issues. This model offers insights about specific cases, such as discussions conducted on two US college campuses, which are represented here as belief-networks. The model also supports a more optimistic view of the public’s capacity to deliberate.

An Association as a Belief Network and Social Network

This is a paper that I presented at the Midwest Political Science Association on April 6, 2024. I hope to reproduce this study with another organization before publishing the results as a comparison. I am open to investigating groups that you may be involved with–a Rotary Club like the one in this study, a religious congregation, or something else. Please contact me if you are interested in exploring such a study.

Abstract

A social network is composed of individuals who may have various relationships with one another. Each member of such a network may hold relevant beliefs and may connect each belief to other beliefs. A connection between two beliefs is a reason. Each member’s beliefs and reasons form a more-or-less connected network. As members of a group interact, they share some of their respective beliefs and reasons with peers and form a belief-network that represents their common view. However, either the social network or the belief network can be disconnected if the group is divided.

This study mapped both the social network and the belief-network of a Rotary Club in the US Midwest. The Club’s leadership found the results useful for diagnostic and planning purposes. This study also piloted a methodology that may be useful for social scientists who analyze organizations and associations of various kinds.

Beliefs and connections among beliefs in a club

An Association as a Belief Network and Social Network

I will present a paper entitled “An Association as a Belief Network and Social Network” at next week’s Midwestern Political Science Association meeting (remotely). This is the paper.

Abstract:

A social network is composed of individuals who may have various relationships with one another. Each member of such a network may hold relevant beliefs and may connect each belief to other beliefs. A connection between two beliefs is a reason. Each member’s beliefs and reasons form a more-or-less connected network. As members of a group interact, they share some of their respective beliefs and reasons with peers and form a belief-network that represents their common view. However, either the social network or the belief network can be disconnected if the group is divided.

This study mapped both the social network and the belief-network of a Rotary Club in the US Midwest. The Club’s leadership found the results useful for diagnostic and planning purposes. This study also piloted a methodology that may be useful for social scientists who analyze organizations and associations of various kinds.

Two illustrative graphs …

Below is the social network of the organization. A link indicates that someone named another person as a significant influence. The size of each dot reflects the number of people who named that individual. The network is connected, not balkanized. However, there are definitely some insiders, who have lots of connections, and a periphery.

The belief-network is shown above this post. The nodes are beliefs held by members of the group. A link indicates that some members connect one belief to another as a reason, e.g., “I appreciate friendships in the club” and therefore, “I enjoy the meetings” (or vice-versa). Nodes with more connections are larger and placed nearer the center.

One takeaway is that members disagree about certain matters, such as the state of the local economy, but those contested beliefs do not serve as reasons for other beliefs, which prevents the group from fragmenting.

I would be interested in replicating this method with other organizations. I can share practical takeaways with a group while learning more from the additional case.

See also: a method for analyzing organizations

people are not points in space

This is the video of a lecture that I gave at the Institute H21 symposium in Prague last September. The symposium was entitled Democracy in the 21st Century: Challenges for an Open Society, and my talk was: “People Are Not Points in Space: Opinions and Discussions as Networks of Ideas.” I’m grateful for the opportunity to present and for the ideas of other participants and organizers.

My main point was that academic research currently disparages the reasoning potential of ordinary people, and this skepticism discourages efforts to protect and enhance democratic institutions. I think the low estimate of people’s capacity is a bias that is reinforced by prevalent statistical methods, and I endorse an alternative methodology.

See also:  individuals in cultures: the concept of an idiodictuon; Analyzing Political Opinions and Discussions as Networks of Ideas; a method for analyzing organizations